PAWAN WAGH ACADEMY

Notes-Topic- Some Basic Concepts of Chemistry

• Matter – Any element or substance having mass and which occupies space is called as 'Matter'.

1. Pure Substance -

The substance having definite (fixed) chemical composition is called as 'Pure Substance'.

Ex - Pure Metal

2. Mixture -

The substance having no definite (fixed) chemical compounds is called as 'Mixture'.

Ex - Paint (mixture of oil and additive)

3. Element -

The pure substance which cannot be broken down into simpler substance are called as 'Element'.

Ex - Metals, Non-metals, Metalloids

4. Compounds -

The pure substance which can be broken down into simpler substance are called as 'Compound'.

Ex - Any chemical compound.

5. <u>Homogeneous Mixture</u> - (एक जैसा Mixture)

The mixture in which the molecules of solute and solvent are uniformly mixed is called as 'Homogeneous mixture'.

Ex - Soluble solid in a liquid.

6. Heterogeneous Mixture -

The mixture in which the molecules of solute and solvent are not uniformly mixed is called as 'Heterogeneous mixture'.

Ex - Insoluble solid in liquid

Properties of Metals, Non-Metals and Metalloids.

Properties	Metals	Non-Metals	Metalloids
Luster	Have luster	Do not have	They show
(shinning)	(shinning)	Luster	Intermediate
		(shinning)	properties of
			both metals
			and non-metals
Conducting	Good conductor	Poor conduct	<i>X</i> , <i>y</i> , <i>y</i>
Property	of heat and	or of heat and	Same as Above
	electricity	electricity	
Malleability	Metals are	Non-Metals are	Same as Above
	malleable, so	not malleable	
	they can be		
	hammered into		
	sheets		
Ductility	Metals are	Non-metals are	Same as Above
	ductile, so they	not ductile	
	can be drawn		
	into wires		
Ex	Iron, Copper	Gases,	Silicon,
		Nitrogen,	Germanium
		Oxygen	

• Malleability -

Metals
$$\xrightarrow{Hammered}$$
 Sheet (thin)

• <u>Ductility</u> -

Metals
$$\xrightarrow{Drawn}$$
 Wire (thin)

Properties of Matter

Physical Properties

The properties which Can be measured without Changing chemical com-Position are called as 'Physical Properties'.

Chemical Properties

The properties which can be measured by changing chemical composition or which involves changes in chemical composition are called as 'Chemical Properties'.

Ex - Coal
$$\xrightarrow{Burns}$$
 $CO_{2 (g)}$ (Carbon dioxide Gas)

Measurement of Properties

Properties can be measured using various Units.

Units -

The arbitrarily decided and universally accepted standards are called 'Units'.

Unit can be expressed as

S.I Unit

C.G.S Unit (International system of Units) (Centimeter for length, mass,...)

• S.I unit for physical quantities

Length → Meter (m)

Mass → Kilogram (kg)

Time → Second

Current → Ampere

Temperature → Kelvin

Amount of substance → Mole

1. Mass and Weight -

Mass → The mass of body does not vary with changes in position. (places)

Weight → The Weight of the body vary with changes in the position.

So mass is more fundamental (major) property.

For more papers please visit www.pawanwaghacademy.com

2. Length -

Length can be \rightarrow Length

Atomic Radius → Bond Length Wavelength of Radiation

3. Volume -

Amount of space occupies by any object.

 $Ex - van 3\pi dl$, van result of the contract of the contract

$$1 \times 1 \times 1 = 1 \text{ ml}$$

So, $1 \text{ cm}^3 = 1 \text{ ml}$ and $1 \text{ dm}^3 = 1 \text{ litre}$

4. Density -

It is the ratio of mass per unit length volume.

Density =
$$\frac{Mass}{Volume}$$
 $\longrightarrow \frac{kg}{m^3}$ \longrightarrow S.I Units

5. Temperature -

It is measure of hotness or coldness of an object.

$$T(K) = T(^{\circ}c) + 273.15$$
And $T(^{\circ}F) = \frac{9}{7}(T^{\circ}c) + 32$

And
$$T(^{\circ}F) = \frac{9}{5}(T^{\circ}c) + 32$$

- T° = Temperature in degree Celsius
- T(K) = Temperature in Kelvin
- T° F = Temperature in degree Fahrenheit

Laws

1. Law of Conservation of Mass -

Mass can be neither be created nor be destroyed.

2. Law of Definite Proportions -

A given compound always contains exactly same (definite) proportion of element by weight.

Proportion of element is same (%) in both types of Sample of element.

3. Law of Multiple Properties -

When two element forms more than one product, then masses of element are in ratio of small whole number.

$$Ex -$$

1. Hydrogen + Oxygen

$$2g$$
 $16g$

Water or H_2O
 $18g$

Hydrogen + Oxygen

or or or

 H_2
 O_2

Peroxide

2. $2g$
 O_2

So, $\frac{Oxyegen\ mass\ 1^{st}\ Reaction}{Oxygen\ Mass\ in\ 2^{nd}\ Reaction} = \frac{16}{32} = \frac{1}{2}$

So, the ratio (1/2) obtained in small whole number.

4. Gay Lussac Law of Gaseous Volume -

When gases combines in a chemical reaction, they combine in a simple ratio by volume 'At same Temperature and Pressure'.

Ex -
$$H_2$$
 + O \longrightarrow H_2O Assume

100 ml 50 ml 100 ml

100 ml

2 1 2 1 2 100 = 2

So, Ratio is (2:1:2)

For more papers please visit www.pawanwaghacademy.com

5. Avogadro's Law -

Equal volume of all gases contains equal number of molecules. 'At same Temperature and Pressure'.

Number of volume \cong Number of Molecules

$$Ex - H_2 + O \longrightarrow H_2O$$

Also same

Daltons Atomic Theory

- 1) Matter consist of tiny, indivisible particle called as atom.
- 2) All atoms of a particular or specific element have identical (same) mass.
- 3) When atoms of different elements combine in a fixed ratio, they forms compounds.
- 4) Chemical reaction involved reorganization of atoms.

❖ Atomic Mass Unit (A.M.U)

1 amu =
$$\frac{1}{12}$$
 x Mass of c - 12

$$1 \text{ amu} = 1.66 \times 10^{-24} \text{g}$$

❖ Average Atomic Mass

= Sum of % of all atomic masses

❖ Formula Mass

It is the sum of atomic masses of atoms.

❖ One Mole

1 mole = N_A = Avogadro's Number = 6.022 x 10²³ Atoms of element

Where

$$\rightarrow$$
 V_m = Molar Volume = 22.4 $\frac{dm^3}{mol}$

$$\rightarrow$$
 N_A = Avogadro's Number = 6.022 x 10²³ atom

6 Formula that are derived from chart.

1) No of moles =
$$\frac{Mass}{Molecular Mass}$$

2) Mass = No of Moles x Molecular mass

3) No of Moles =
$$\frac{Volume}{Molar Volume}$$

4) Volume = No of moles x Molar Volume

5) No of moles =
$$\frac{No \ of \ ions}{N_A}$$

6) No of ions = No of moles $x N_A$ = No of moles $\times 6.022 \times 10^{23}$ atoms

Thank You !!!